An Introduction To Squirrel Applications Example 7
In this example we will create a remote monitoring application that takes asynchronous sensor readings using the Promise library and detects freefall events. We will conserve power by putting the device to sleep between readings. The device will connect periodically to send readings and will also wake and connect if a freefall is detected. This code can be easily configured for use with an imp006 Breakout Kit, impExplorer Kit, impAccelerator Battery Powered Sensor Node or impC001 Breakout Board.
Advanced
This example will focus on writing Squirrel code. Please visit the Getting Started Guide on the Electric Imp Dev Center to learn how to configure your device with BlinkUp™ and how to use the Electric Imp IDE, impCentral™.
.HAL.nut
file in the repository that matches your hardware.
// HARDWARE ABSTRACTION LAYER
// ---------------------------------------------------
// HAL's are tables that map human readable names to
// the hardware objects used in the application.
// Copy and Paste Your HAL here
ExplorerKit_001 <- {
"LED_SPI" : hardware.spi257,
"SENSOR_AND_GROVE_I2C" : hardware.i2c89,
"TEMP_HUMID_I2C_ADDR" : 0xBE,
"ACCEL_I2C_ADDR" : 0x32,
"PRESSURE_I2C_ADDR" : 0xB8,
"POWER_GATE_AND_WAKE_PIN" : hardware.pin1,
"AD_GROVE1_DATA1" : hardware.pin2,
"AD_GROVE2_DATA1" : hardware.pin5
}
// REMOTE MONITORING INTERRUPT APPLICATION CODE
// --------------------------------------------------------
// Application code, take readings from our sensors
// and send the data to the agent
class Application {
// Time in seconds to wait between readings
static READING_INTERVAL_SEC = 30;
// Time in seconds to wait between connections
static REPORTING_INTERVAL_SEC = 300;
// Max number of stored readings
static MAX_NUM_STORED_READINGS = 20;
// Time to wait after boot before disconnecting
static BOOT_TIMER_SEC = 60;
// Accelerometer data rate in Hz
static ACCEL_DATARATE = 10;
// Hardware variables
i2c = ExplorerKit_001.SENSOR_AND_GROVE_I2C; // Replace with your sensori2c
tempHumidAddr = ExplorerKit_001.TEMP_HUMID_I2C_ADDR; // Replace with your tempHumid i2c addr
accelAddr = ExplorerKit_001.ACCEL_I2C_ADDR; // Replace with your accel i2c addr
wakePin = ExplorerKit_001.POWER_GATE_AND_WAKE_PIN; // Replace with your wake pin
// Sensor variables
tempHumid = null;
accel = null;
// Message Manager variable
mm = null;
// Flag to track first disconnection
_boot = true;
constructor() {...}
// Remote Monitoring Application With Interrupt Device Code | |
// --------------------------------------------------- | |
// NOTE: imp004m, and imp006 devices do not have nv storage. | |
// This code will work around this on limitation by using shallow sleep | |
// See developer docs - https://developer.electricimp.com/api/nv and | |
// https://developer.electricimp.com/resources/sleepstatesexplained | |
// SENSOR LIBRARIES | |
// -------------------------------------------------------- | |
// Libraries must be required before all other code | |
// Accelerometer Library | |
#require "LIS3DH.device.lib.nut:2.0.2" | |
// Temperature Humidity sensor Library | |
#require "HTS221.device.lib.nut:2.0.1" | |
// Library to help with asynchonous programming | |
#require "promise.lib.nut:4.0.0" | |
// Library to manage agent/device communication | |
#require "MessageManager.lib.nut:2.2.0" | |
// HARDWARE ABSTRACTION LAYER | |
// -------------------------------------------------------- | |
// HAL's are tables that map human readable names to | |
// the hardware objects used in the application. | |
// Copy and Paste Your HAL here | |
// YOUR_HAL <- {...} | |
// REMOTE MONITORING INTERRUPT APPLICATION CODE | |
// -------------------------------------------------------- | |
// Application code, take readings from our sensors | |
// and send the data to the agent | |
class Application { | |
// Time in seconds to wait between readings | |
static READING_INTERVAL_SEC = 30; | |
// Time in seconds to wait between connections | |
static REPORTING_INTERVAL_SEC = 300; | |
// Max number of stored readings | |
static MAX_NUM_STORED_READINGS = 20; | |
// Time to wait after boot before first disconection | |
// This allows time for blinkup recovery on cold boots | |
static BOOT_TIMER_SEC = 60; | |
// Accelerometer data rate in Hz | |
static ACCEL_DATARATE = 25; | |
// Hardware variables | |
i2c = null; // Replace with your sensori2c | |
tempHumidAddr = null; // Replace with your tempHumid i2c addr | |
accelAddr = null; // Replace with your accel i2c addr | |
wakePin = null; // Replace with your wake pin | |
// Sensor variables | |
tempHumid = null; | |
accel = null; | |
// Message Manager variable | |
mm = null; | |
// Flag to track first disconnection | |
_boot = false; | |
// Flag to track if imp is trying to connect | |
_connecting = false; | |
constructor() { | |
// Power save mode will reduce power consumption when the radio | |
// is idle, a good first step for saving power for battery | |
// powered devices. | |
// NOTE: Power save mode will add latency when sending data. | |
// Power save mode is not supported on impC001 and is not | |
// recommended for imp004m, so don't set for those types of imps. | |
local type = imp.info().type; | |
if (!(type == "imp004m" || type == "impC001")) { | |
imp.setpowersave(true); | |
} | |
// Change default connection policy, so our application | |
// continues to run even if the connection fails | |
server.setsendtimeoutpolicy(RETURN_ON_ERROR, WAIT_TIL_SENT, 10); | |
// Configure message manager for device/agent communication | |
mm = MessageManager(); | |
// Message Manager allows us to call a function when a message | |
// has been delivered. We will use this to know when it is ok | |
// to disconnect. | |
mm.onAck(readingsAckHandler.bindenv(this)); | |
// Message Manager allows us to call a function if a message | |
// fails to be delivered. We will use this to recover data | |
mm.onFail(sendFailHandler.bindenv(this)); | |
// Initialize sensors | |
initializeSensors(); | |
// Configure different behavior based on the reason the | |
// hardware rebooted | |
checkWakeReason(); | |
} | |
function checkWakeReason() { | |
// We can configure different behavior based on | |
// the reason the hardware rebooted. | |
switch (hardware.wakereason()) { | |
case WAKEREASON_TIMER : | |
// We woke up after sleep timer expired. | |
restoreNV(); | |
break; | |
case WAKEREASON_PIN : | |
// We woke up because an interrupt pin was triggered. | |
restoreNV(); | |
// Let's check our interrupt | |
checkInterrupt(); | |
break; | |
case WAKEREASON_SNOOZE : | |
// We woke up after connection timeout. | |
restoreNV(); | |
break; | |
default : | |
// We pushed new code or just rebooted the device, etc. Lets | |
// congigure everything. | |
server.log("Device running..."); | |
// NV can persist data when the device goes into sleep mode | |
// Set up the table with defaults - note this method will | |
// erase stored data, so we only want to call it when the | |
// application is starting up. | |
configureNV(); | |
// We want to make sure we can always blinkUp a device | |
// when it is first powered on, so we do not want to | |
// immediately disconnect after boot | |
// Set up first disconnect | |
_boot = true; | |
imp.wakeup(BOOT_TIMER_SEC, function() { | |
_boot = false; | |
powerDown(); | |
}.bindenv(this)); | |
} | |
// Configure Sensors to take readings | |
configureSensors(); | |
takeReadings(); | |
} | |
function takeReadings() { | |
// Take readings by building an array of functions that all | |
// return promises. | |
local series = [takeTempHumidReading(), takeAccelReading()]; | |
// The all method executes the series of promises in parallel | |
// and resolves when they are all done. It Returns a promise | |
// that resolves with an array of the resolved promise values. | |
Promise.all(series) | |
.then(function(results) { | |
// Create a table to store the results from the sensor readings | |
// Add a timestamp | |
local reading = {"time" : time()}; | |
// Add all successful readings | |
if ("temperature" in results[0]) reading.temperature <- results[0].temperature; | |
if ("humidity" in results[0]) reading.humidity <- results[0].humidity; | |
if ("x" in results[1]) reading.accel_x <- results[1].x; | |
if ("y" in results[1]) reading.accel_y <- results[1].y; | |
if ("z" in results[1]) reading.accel_z <- results[1].z; | |
// Add table to the readings array for storage til next connection | |
status.readings.push(reading); | |
return("Readings Done"); | |
}.bindenv(this)) | |
.finally(checkConnectionTime.bindenv(this)) | |
} | |
function takeTempHumidReading() { | |
return Promise(function(resolve, reject) { | |
tempHumid.read(function(result) { | |
return resolve(result); | |
}.bindenv(this)) | |
}.bindenv(this)) | |
} | |
function takeAccelReading() { | |
return Promise(function(resolve, reject) { | |
accel.getAccel(function(result) { | |
return resolve(result); | |
}.bindenv(this)) | |
}.bindenv(this)) | |
} | |
function checkConnectionTime(value = null) { | |
// Grab a timestamp | |
local now = time(); | |
// Update the next reading time varaible | |
setNextReadTime(now); | |
// If we are not currently tring to connect, check if we | |
// should connect, send data, or power down | |
if (!_connecting) { | |
local connected = server.isconnected(); | |
// Send if we are connected or if it is | |
// time to connect | |
if (connected || timeToConnect()) { | |
// Update the next connection time varaible | |
setNextConnectTime(now); | |
if (connected) { | |
sendData(); | |
} else { | |
// Toggle connecting flag | |
_connecting = true; | |
// We changed the default connection policy, so we need to | |
// use this method to connect | |
server.connect(function(reason) { | |
// Connect handler called, we are no longer tring to | |
// connect, so set connecting flag to false | |
_connecting = false; | |
if (reason == SERVER_CONNECTED) { | |
// We connected let's send readings | |
sendData(); | |
} else { | |
// We were not able to connect | |
// Let's make sure we don't run out | |
// of memory with our stored readings | |
failHandler(); | |
} | |
}.bindenv(this)); | |
} | |
} else { | |
// Not time to connect & we are not currently | |
// trying to send data, so let's sleep until | |
// next reading time | |
powerDown(); | |
} | |
} else { | |
// Calculate how long before next reading time | |
local timer = status.nextReadTime - now; | |
// Schedule next reading | |
imp.wakeup(timer, takeReadings.bindenv(this)); | |
} | |
} | |
function sendData() { | |
local data = {}; | |
if (status.readings.len() > 0) { | |
data.readings <- status.readings; | |
} | |
if (status.alerts.len() > 0) { | |
data.alerts <- status.alerts; | |
} | |
// Send data to the agent | |
mm.send("data", data); | |
// If this message is acknowleged by the agent | |
// the readingsAckHandler will be triggered | |
// If the message fails to send we will handle | |
// in the sendFailHandler handler | |
} | |
function readingsAckHandler(msg) { | |
// We connected successfully & sent data | |
// Clear readings we just sent | |
status.readings.clear(); | |
// Clear alerts we just sent | |
status.alerts.clear(); | |
// Reset numFailedConnects | |
status.numFailedConnects <- 0; | |
// Disconnect from server | |
powerDown(); | |
} | |
function sendFailHandler(msg, error, retry) { | |
// Message did not send, call the connection | |
// failed handler, so readings can be | |
// condensed and stored | |
failHandler(); | |
} | |
function setWakeup(timer) { | |
imp.wakeup(timer, function() { | |
powerUpSensors(); | |
takeReadings(); | |
}.bindenv(this)) | |
} | |
function powerDown() { | |
// Power Down sensors | |
powerDownSensors(); | |
// Calculate how long before next reading time | |
local timer = status.nextReadTime - time(); | |
local type = imp.info().type; | |
// Check that we did not just boot up, are | |
// not about to take a reading, and have an 'nv' table | |
if (!_boot && timer > 2) { | |
if (!(type == "imp004m" || type == "imp006")) { // We have nv, so deep sleep | |
imp.onidle(function() { | |
server.sleepfor(timer); | |
}.bindenv(this)); | |
} else { // No nv table, so just disconnect and sleep | |
setWakeup(timer); | |
imp.onidle(function() { | |
server.disconnect(); | |
}.bindenv(this)); | |
} | |
} else { | |
// Schedule next reading, but don't go to sleep | |
setWakeup(timer); | |
} | |
} | |
function powerDownSensors() { | |
tempHumid.setMode(HTS221_MODE.POWER_DOWN); | |
} | |
function powerUpSensors() { | |
tempHumid.setMode(HTS221_MODE.ONE_SHOT); | |
} | |
function failHandler() { | |
// We are having connection issues | |
// Let's condense and re-store the data | |
// Find the number of times we have failed | |
// to connect (use this to determine new readings | |
// vs. previously condensed readings) | |
local failed = status.numFailedConnects; | |
local readings; | |
// Make a copy of the stored readings | |
readings = status.readings.slice(0); | |
// Clear stored readings | |
status.readings.clear(); | |
if (readings.len() > 0) { | |
// Create an array to store condensed readings | |
local condensed = []; | |
// If we have already averaged readings move them | |
// into the condensed readings array | |
for (local i = 0; i < failed; i++) { | |
condensed.push( readings.remove(i) ); | |
} | |
// Condense and add the new readings | |
condensed.push(getAverage(readings)); | |
// Drop old readings if we are running out of space | |
while (condensed.len() >= MAX_NUM_STORED_READINGS) { | |
condensed.remove(0); | |
} | |
// If new readings have come in while we were processing | |
// Add those to the condensed readings | |
if (status.readings.len() > 0) { | |
foreach(item in status.readings) { | |
condensed.push(item); | |
} | |
} | |
// Replace the stored readings with the condensed readings | |
status.readings <- condensed; | |
} | |
// Update the number of failed connections | |
status.numFailedConnects <- failed++; | |
powerDown(); | |
} | |
function getAverage(readings) { | |
// Variables to help us track readings we want to average | |
local tempTotal = 0; | |
local humidTotal = 0; | |
local tCount = 0; | |
local hCount = 0; | |
// Loop through the readings to get a total | |
foreach(reading in readings) { | |
if ("temperature" in reading) { | |
tempTotal += reading.temperature; | |
tCount ++; | |
} | |
if ("humidity" in reading) { | |
humidTotal += reading.humidity; | |
hCount++; | |
} | |
} | |
// Grab the last value from the readings array | |
// This we allow us to keep the last accelerometer | |
// reading and time stamp | |
local last = readings.top(); | |
// Update the other values with an average | |
last.temperature <- tempTotal / tCount; | |
last.humidity <- humidTotal / hCount; | |
// return the condensed single value | |
return last | |
} | |
function configureNV() { | |
local type = imp.info().type; | |
local root = getroottable(); | |
// Create a table for storing status and recent readings | |
if (!("status" in root)) root.status <- {}; | |
if (!(type == "imp004m" || type == "imp006")) { | |
// There is an nv table, so make the status table a | |
// reference to nv so it will be persisted | |
if (!("nv" in root)) root.nv <- {}; | |
status = nv; | |
} | |
local now = time(); | |
setNextConnectTime(now); | |
setNextReadTime(now); | |
status.readings <- []; | |
status.alerts <-[]; | |
status.numFailedConnects <- 0; | |
} | |
function restoreNV() { | |
local root = getroottable(); | |
local type = imp.info().type; | |
if (!("status" in root)) root.status <- {}; | |
if (!(type == "imp004m" || type == "imp006")) status = nv ; | |
} | |
function setNextConnectTime(now) { | |
status.nextConnectTime <- now + REPORTING_INTERVAL_SEC; | |
} | |
function setNextReadTime(now) { | |
status.nextReadTime <- now + READING_INTERVAL_SEC; | |
} | |
function timeToConnect() { | |
// return a boolean - if it is time to connect based on | |
// the current time or alerts | |
return (time() >= status.nextConnectTime || status.alerts.len() > 0); | |
} | |
function configureInterrupt() { | |
accel.configureInterruptLatching(true); | |
accel.configureFreeFallInterrupt(true); | |
// Configure wake pin | |
wakePin.configure(DIGITAL_IN_WAKEUP, function() { | |
if (wakePin.read() && checkInterrupt()) { | |
powerUpSensors(); | |
takeReadings(); | |
} | |
}.bindenv(this)); | |
} | |
function checkInterrupt() { | |
local interrupt = accel.getInterruptTable(); | |
if (interrupt.int1) { | |
status.alerts.push({"msg" : "Freefall Detected", "time": time()}); | |
} | |
return interrupt.int1; | |
} | |
function initializeSensors() { | |
// Configure i2c | |
i2c.configure(CLOCK_SPEED_400_KHZ); | |
// Initialize sensors | |
tempHumid = HTS221(i2c, tempHumidAddr); | |
accel = LIS3DH(i2c, accelAddr); | |
} | |
function configureSensors() { | |
// Configure sensors to take readings | |
tempHumid.setMode(HTS221_MODE.ONE_SHOT); | |
accel.reset(); | |
accel.setMode(LIS3DH_MODE_LOW_POWER); | |
accel.setDataRate(ACCEL_DATARATE); | |
accel.enable(true); | |
// Configure accelerometer freefall interrupt | |
configureInterrupt(); | |
} | |
} | |
// RUNTIME | |
// --------------------------------------------------- | |
// Initialize application to start readings loop | |
app <- Application(); |
// Remote Monitoring Application With Interrupt Agent Code | |
// ------------------------------------------------------- | |
// CLOUD SERVICE LIBRARY | |
// ------------------------------------------------------- | |
// Libraries must be required before all other code | |
// Initial State Library | |
#require "InitialState.class.nut:1.0.0" | |
// Library to manage agent/device communication | |
#require "MessageManager.lib.nut:2.2.0" | |
// REMOTE MONITORING INTERRUPT APPLICATION CODE | |
// ------------------------------------------------------- | |
// Application code, listen for readings from device, | |
// when a reading is received send the data to Initial | |
// State | |
class Application { | |
// On Intial State website navigate to "my account" | |
// page find/create a "Streaming Access Key" | |
// Paste it into the variable below | |
static STREAMING_ACCESS_KEY = ""; | |
// Class variables | |
iState = null; | |
agentID = null; | |
mm = null; | |
constructor() { | |
// Initialize Initial State | |
iState = InitialState(STREAMING_ACCESS_KEY); | |
// Configure message manager for device/agent communication | |
mm = MessageManager(); | |
// The Initial State library will create a bucket | |
// using the agent ID | |
agentID = split(http.agenturl(), "/").top(); | |
// Let's log the agent ID here | |
server.log("Agent ID: " + agentID); | |
mm.on("data", dataHandler.bindenv(this)); | |
} | |
function dataHandler(msg, reply) { | |
// Log the data from the device. The data is a | |
// table, so use JSON encodeing method convert to a string | |
// server.log(http.jsonencode(msg.data)); | |
// Initial State requires the data in a specific structre | |
// Build an array with the data from our reading. | |
local events = []; | |
if ("readings" in msg.data) { | |
server.log(http.jsonencode(msg.data.readings)); | |
foreach (reading in msg.data.readings) { | |
events.push({"key" : "temperature", "value" : reading.temperature, "epoch" : reading.time}); | |
events.push({"key" : "humidity", "value" : reading.humidity, "epoch" : reading.time}); | |
events.push({"key" : "accel_x", "value" : reading.accel_x, "epoch" : reading.time}); | |
events.push({"key" : "accel_y", "value" : reading.accel_y, "epoch" : reading.time}); | |
events.push({"key" : "accel_z", "value" : reading.accel_z, "epoch" : reading.time}); | |
} | |
} | |
if ("alerts" in msg.data) { | |
server.log(http.jsonencode(msg.data.alerts)); | |
foreach (alert in msg.data.alerts) { | |
events.push({"key" : "alert", "value" : alert.msg, "epoch" : alert.time}); | |
} | |
} | |
// Send reading to Initial State | |
iState.sendEvents(events, function(err, resp) { | |
if (err != null) { | |
// We had trouble sending to Initial State, log the error | |
server.error("Error sending to Initial State: " + err); | |
} else { | |
// A successful send. The response is an empty string, so | |
// just log a generic send message | |
server.log("Reading sent to Initial State."); | |
} | |
}) | |
} | |
} | |
// RUNTIME | |
// --------------------------------------------------- | |
server.log("Agent running..."); | |
// Run the Application | |
Application(); |