Skip to main content

Remote Monitoring Application With An Interrupt

An Introduction To Squirrel Applications Example 7

In this example we will create a remote monitoring application that takes asynchronous sensor readings using the Promise library and detects freefall events. We will conserve power by putting the device to sleep between readings. The device will connect periodically to send readings and will also wake and connect if a freefall is detected. This code can be easily configured for use with an imp006 Breakout Kit, impExplorer Kit, impAccelerator Battery Powered Sensor Node or impC001 Breakout Board.

Skill level

Advanced

This example will focus on writing Squirrel code. Please visit the Getting Started Guide on the Electric Imp Dev Center to learn how to configure your device with BlinkUp™ and how to use the Electric Imp IDE, impCentral™.

What You Learn

  • How to use Electric Imp libraries.
  • How to send data to a cloud service such as Initial State.
  • How to use a Hardware Abstraction Layer (HAL).
  • How to write a class in Squirrel.
  • How to program your device to run offline.
  • How to configure sensors to take asynchronous readings using the Promise library.
  • How to send data between device and agent using the Message Manager library.
  • How to configure and use nv storage.
  • How to put the imp into deep sleep.
  • How to change the default connection policy.
  • How to configure the accelerometer’s freefall interrupt.
  • How to wake on an interrupt.

What You Need

Instructions

// HARDWARE ABSTRACTION LAYER
// ---------------------------------------------------
// HAL's are tables that map human readable names to
// the hardware objects used in the application.

// Copy and Paste Your HAL here
ExplorerKit_001 <- {
    "LED_SPI" : hardware.spi257,
    "SENSOR_AND_GROVE_I2C" : hardware.i2c89,
    "TEMP_HUMID_I2C_ADDR" : 0xBE,
    "ACCEL_I2C_ADDR" : 0x32,
    "PRESSURE_I2C_ADDR" : 0xB8,
    "POWER_GATE_AND_WAKE_PIN" : hardware.pin1,
    "AD_GROVE1_DATA1" : hardware.pin2,
    "AD_GROVE2_DATA1" : hardware.pin5
}
  • Assign your hardware class variables. In the Application class before the constructor you will find a number of class variables. You will need to re-assign the hardware variables so they look something like the example below. Do not copy and paste from this example, as these values may differ from the ones in your HAL.
// REMOTE MONITORING INTERRUPT APPLICATION CODE
// --------------------------------------------------------
// Application code, take readings from our sensors
// and send the data to the agent

class Application {

    // Time in seconds to wait between readings
    static READING_INTERVAL_SEC = 30;
    // Time in seconds to wait between connections
    static REPORTING_INTERVAL_SEC = 300;
    // Max number of stored readings
    static MAX_NUM_STORED_READINGS = 20;
    // Time to wait after boot before disconnecting
    static BOOT_TIMER_SEC = 60;
    // Accelerometer data rate in Hz
    static ACCEL_DATARATE = 10;

    // Hardware variables
    i2c             = ExplorerKit_001.SENSOR_AND_GROVE_I2C; // Replace with your sensori2c
    tempHumidAddr   = ExplorerKit_001.TEMP_HUMID_I2C_ADDR; // Replace with your tempHumid i2c addr
    accelAddr       = ExplorerKit_001.ACCEL_I2C_ADDR; // Replace with your accel i2c addr
    wakePin         = ExplorerKit_001.POWER_GATE_AND_WAKE_PIN; // Replace with your wake pin

    // Sensor variables
    tempHumid = null;
    accel = null;

    // Message Manager variable
    mm = null;

    // Flag to track first disconnection
    _boot = true;

    constructor() {...}
  • Copy and paste the Agent Code into the Agent Code pane in the impCentral code editor.
  • Sign into Initial State.
  • Find your Streaming Access Key on the My Account page.
  • Navigate back to impCentral.
  • In the Agent code enter your Streaming Access Key into the Application class static variable STREAMING_ACCESS_KEY on line 24.
  • Hit the Build and Force Restart button to start the code.
  • Note the agent ID in the logs.
  • Navigate back to Initial State, find the Bucket that matches your agent ID.
  • Watch your data update in the Source, Lines, Waves and Tile views on the Initial State website.

Code

Device Code

// Remote Monitoring Application With Interrupt Device Code
// ---------------------------------------------------
// NOTE: imp004m, and imp006 devices do not have nv storage.
// This code will work around this on limitation by using shallow sleep
// See developer docs - https://developer.electricimp.com/api/nv and
// https://developer.electricimp.com/resources/sleepstatesexplained
// SENSOR LIBRARIES
// --------------------------------------------------------
// Libraries must be required before all other code
// Accelerometer Library
#require "LIS3DH.device.lib.nut:2.0.2"
// Temperature Humidity sensor Library
#require "HTS221.device.lib.nut:2.0.1"
// Library to help with asynchonous programming
#require "promise.lib.nut:4.0.0"
// Library to manage agent/device communication
#require "MessageManager.lib.nut:2.2.0"
// HARDWARE ABSTRACTION LAYER
// --------------------------------------------------------
// HAL's are tables that map human readable names to
// the hardware objects used in the application.
// Copy and Paste Your HAL here
// YOUR_HAL <- {...}
// REMOTE MONITORING INTERRUPT APPLICATION CODE
// --------------------------------------------------------
// Application code, take readings from our sensors
// and send the data to the agent
class Application {
// Time in seconds to wait between readings
static READING_INTERVAL_SEC = 30;
// Time in seconds to wait between connections
static REPORTING_INTERVAL_SEC = 300;
// Max number of stored readings
static MAX_NUM_STORED_READINGS = 20;
// Time to wait after boot before first disconection
// This allows time for blinkup recovery on cold boots
static BOOT_TIMER_SEC = 60;
// Accelerometer data rate in Hz
static ACCEL_DATARATE = 25;
// Hardware variables
i2c = null; // Replace with your sensori2c
tempHumidAddr = null; // Replace with your tempHumid i2c addr
accelAddr = null; // Replace with your accel i2c addr
wakePin = null; // Replace with your wake pin
// Sensor variables
tempHumid = null;
accel = null;
// Message Manager variable
mm = null;
// Flag to track first disconnection
_boot = false;
// Flag to track if imp is trying to connect
_connecting = false;
constructor() {
// Power save mode will reduce power consumption when the radio
// is idle, a good first step for saving power for battery
// powered devices.
// NOTE: Power save mode will add latency when sending data.
// Power save mode is not supported on impC001 and is not
// recommended for imp004m, so don't set for those types of imps.
local type = imp.info().type;
if (!(type == "imp004m" || type == "impC001")) {
imp.setpowersave(true);
}
// Change default connection policy, so our application
// continues to run even if the connection fails
server.setsendtimeoutpolicy(RETURN_ON_ERROR, WAIT_TIL_SENT, 10);
// Configure message manager for device/agent communication
mm = MessageManager();
// Message Manager allows us to call a function when a message
// has been delivered. We will use this to know when it is ok
// to disconnect.
mm.onAck(readingsAckHandler.bindenv(this));
// Message Manager allows us to call a function if a message
// fails to be delivered. We will use this to recover data
mm.onFail(sendFailHandler.bindenv(this));
// Initialize sensors
initializeSensors();
// Configure different behavior based on the reason the
// hardware rebooted
checkWakeReason();
}
function checkWakeReason() {
// We can configure different behavior based on
// the reason the hardware rebooted.
switch (hardware.wakereason()) {
case WAKEREASON_TIMER :
// We woke up after sleep timer expired.
restoreNV();
break;
case WAKEREASON_PIN :
// We woke up because an interrupt pin was triggered.
restoreNV();
// Let's check our interrupt
checkInterrupt();
break;
case WAKEREASON_SNOOZE :
// We woke up after connection timeout.
restoreNV();
break;
default :
// We pushed new code or just rebooted the device, etc. Lets
// congigure everything.
server.log("Device running...");
// NV can persist data when the device goes into sleep mode
// Set up the table with defaults - note this method will
// erase stored data, so we only want to call it when the
// application is starting up.
configureNV();
// We want to make sure we can always blinkUp a device
// when it is first powered on, so we do not want to
// immediately disconnect after boot
// Set up first disconnect
_boot = true;
imp.wakeup(BOOT_TIMER_SEC, function() {
_boot = false;
powerDown();
}.bindenv(this));
}
// Configure Sensors to take readings
configureSensors();
takeReadings();
}
function takeReadings() {
// Take readings by building an array of functions that all
// return promises.
local series = [takeTempHumidReading(), takeAccelReading()];
// The all method executes the series of promises in parallel
// and resolves when they are all done. It Returns a promise
// that resolves with an array of the resolved promise values.
Promise.all(series)
.then(function(results) {
// Create a table to store the results from the sensor readings
// Add a timestamp
local reading = {"time" : time()};
// Add all successful readings
if ("temperature" in results[0]) reading.temperature <- results[0].temperature;
if ("humidity" in results[0]) reading.humidity <- results[0].humidity;
if ("x" in results[1]) reading.accel_x <- results[1].x;
if ("y" in results[1]) reading.accel_y <- results[1].y;
if ("z" in results[1]) reading.accel_z <- results[1].z;
// Add table to the readings array for storage til next connection
status.readings.push(reading);
return("Readings Done");
}.bindenv(this))
.finally(checkConnectionTime.bindenv(this))
}
function takeTempHumidReading() {
return Promise(function(resolve, reject) {
tempHumid.read(function(result) {
return resolve(result);
}.bindenv(this))
}.bindenv(this))
}
function takeAccelReading() {
return Promise(function(resolve, reject) {
accel.getAccel(function(result) {
return resolve(result);
}.bindenv(this))
}.bindenv(this))
}
function checkConnectionTime(value = null) {
// Grab a timestamp
local now = time();
// Update the next reading time varaible
setNextReadTime(now);
// If we are not currently tring to connect, check if we
// should connect, send data, or power down
if (!_connecting) {
local connected = server.isconnected();
// Send if we are connected or if it is
// time to connect
if (connected || timeToConnect()) {
// Update the next connection time varaible
setNextConnectTime(now);
if (connected) {
sendData();
} else {
// Toggle connecting flag
_connecting = true;
// We changed the default connection policy, so we need to
// use this method to connect
server.connect(function(reason) {
// Connect handler called, we are no longer tring to
// connect, so set connecting flag to false
_connecting = false;
if (reason == SERVER_CONNECTED) {
// We connected let's send readings
sendData();
} else {
// We were not able to connect
// Let's make sure we don't run out
// of memory with our stored readings
failHandler();
}
}.bindenv(this));
}
} else {
// Not time to connect & we are not currently
// trying to send data, so let's sleep until
// next reading time
powerDown();
}
} else {
// Calculate how long before next reading time
local timer = status.nextReadTime - now;
// Schedule next reading
imp.wakeup(timer, takeReadings.bindenv(this));
}
}
function sendData() {
local data = {};
if (status.readings.len() > 0) {
data.readings <- status.readings;
}
if (status.alerts.len() > 0) {
data.alerts <- status.alerts;
}
// Send data to the agent
mm.send("data", data);
// If this message is acknowleged by the agent
// the readingsAckHandler will be triggered
// If the message fails to send we will handle
// in the sendFailHandler handler
}
function readingsAckHandler(msg) {
// We connected successfully & sent data
// Clear readings we just sent
status.readings.clear();
// Clear alerts we just sent
status.alerts.clear();
// Reset numFailedConnects
status.numFailedConnects <- 0;
// Disconnect from server
powerDown();
}
function sendFailHandler(msg, error, retry) {
// Message did not send, call the connection
// failed handler, so readings can be
// condensed and stored
failHandler();
}
function setWakeup(timer) {
imp.wakeup(timer, function() {
powerUpSensors();
takeReadings();
}.bindenv(this))
}
function powerDown() {
// Power Down sensors
powerDownSensors();
// Calculate how long before next reading time
local timer = status.nextReadTime - time();
local type = imp.info().type;
// Check that we did not just boot up, are
// not about to take a reading, and have an 'nv' table
if (!_boot && timer > 2) {
if (!(type == "imp004m" || type == "imp006")) { // We have nv, so deep sleep
imp.onidle(function() {
server.sleepfor(timer);
}.bindenv(this));
} else { // No nv table, so just disconnect and sleep
setWakeup(timer);
imp.onidle(function() {
server.disconnect();
}.bindenv(this));
}
} else {
// Schedule next reading, but don't go to sleep
setWakeup(timer);
}
}
function powerDownSensors() {
tempHumid.setMode(HTS221_MODE.POWER_DOWN);
}
function powerUpSensors() {
tempHumid.setMode(HTS221_MODE.ONE_SHOT);
}
function failHandler() {
// We are having connection issues
// Let's condense and re-store the data
// Find the number of times we have failed
// to connect (use this to determine new readings
// vs. previously condensed readings)
local failed = status.numFailedConnects;
local readings;
// Make a copy of the stored readings
readings = status.readings.slice(0);
// Clear stored readings
status.readings.clear();
if (readings.len() > 0) {
// Create an array to store condensed readings
local condensed = [];
// If we have already averaged readings move them
// into the condensed readings array
for (local i = 0; i < failed; i++) {
condensed.push( readings.remove(i) );
}
// Condense and add the new readings
condensed.push(getAverage(readings));
// Drop old readings if we are running out of space
while (condensed.len() >= MAX_NUM_STORED_READINGS) {
condensed.remove(0);
}
// If new readings have come in while we were processing
// Add those to the condensed readings
if (status.readings.len() > 0) {
foreach(item in status.readings) {
condensed.push(item);
}
}
// Replace the stored readings with the condensed readings
status.readings <- condensed;
}
// Update the number of failed connections
status.numFailedConnects <- failed++;
powerDown();
}
function getAverage(readings) {
// Variables to help us track readings we want to average
local tempTotal = 0;
local humidTotal = 0;
local tCount = 0;
local hCount = 0;
// Loop through the readings to get a total
foreach(reading in readings) {
if ("temperature" in reading) {
tempTotal += reading.temperature;
tCount ++;
}
if ("humidity" in reading) {
humidTotal += reading.humidity;
hCount++;
}
}
// Grab the last value from the readings array
// This we allow us to keep the last accelerometer
// reading and time stamp
local last = readings.top();
// Update the other values with an average
last.temperature <- tempTotal / tCount;
last.humidity <- humidTotal / hCount;
// return the condensed single value
return last
}
function configureNV() {
local type = imp.info().type;
local root = getroottable();
// Create a table for storing status and recent readings
if (!("status" in root)) root.status <- {};
if (!(type == "imp004m" || type == "imp006")) {
// There is an nv table, so make the status table a
// reference to nv so it will be persisted
if (!("nv" in root)) root.nv <- {};
status = nv;
}
local now = time();
setNextConnectTime(now);
setNextReadTime(now);
status.readings <- [];
status.alerts <-[];
status.numFailedConnects <- 0;
}
function restoreNV() {
local root = getroottable();
local type = imp.info().type;
if (!("status" in root)) root.status <- {};
if (!(type == "imp004m" || type == "imp006")) status = nv ;
}
function setNextConnectTime(now) {
status.nextConnectTime <- now + REPORTING_INTERVAL_SEC;
}
function setNextReadTime(now) {
status.nextReadTime <- now + READING_INTERVAL_SEC;
}
function timeToConnect() {
// return a boolean - if it is time to connect based on
// the current time or alerts
return (time() >= status.nextConnectTime || status.alerts.len() > 0);
}
function configureInterrupt() {
accel.configureInterruptLatching(true);
accel.configureFreeFallInterrupt(true);
// Configure wake pin
wakePin.configure(DIGITAL_IN_WAKEUP, function() {
if (wakePin.read() && checkInterrupt()) {
powerUpSensors();
takeReadings();
}
}.bindenv(this));
}
function checkInterrupt() {
local interrupt = accel.getInterruptTable();
if (interrupt.int1) {
status.alerts.push({"msg" : "Freefall Detected", "time": time()});
}
return interrupt.int1;
}
function initializeSensors() {
// Configure i2c
i2c.configure(CLOCK_SPEED_400_KHZ);
// Initialize sensors
tempHumid = HTS221(i2c, tempHumidAddr);
accel = LIS3DH(i2c, accelAddr);
}
function configureSensors() {
// Configure sensors to take readings
tempHumid.setMode(HTS221_MODE.ONE_SHOT);
accel.reset();
accel.setMode(LIS3DH_MODE_LOW_POWER);
accel.setDataRate(ACCEL_DATARATE);
accel.enable(true);
// Configure accelerometer freefall interrupt
configureInterrupt();
}
}
// RUNTIME
// ---------------------------------------------------
// Initialize application to start readings loop
app <- Application();

Agent Code

// Remote Monitoring Application With Interrupt Agent Code
// -------------------------------------------------------
// CLOUD SERVICE LIBRARY
// -------------------------------------------------------
// Libraries must be required before all other code
// Initial State Library
#require "InitialState.class.nut:1.0.0"
// Library to manage agent/device communication
#require "MessageManager.lib.nut:2.2.0"
// REMOTE MONITORING INTERRUPT APPLICATION CODE
// -------------------------------------------------------
// Application code, listen for readings from device,
// when a reading is received send the data to Initial
// State
class Application {
// On Intial State website navigate to "my account"
// page find/create a "Streaming Access Key"
// Paste it into the variable below
static STREAMING_ACCESS_KEY = "";
// Class variables
iState = null;
agentID = null;
mm = null;
constructor() {
// Initialize Initial State
iState = InitialState(STREAMING_ACCESS_KEY);
// Configure message manager for device/agent communication
mm = MessageManager();
// The Initial State library will create a bucket
// using the agent ID
agentID = split(http.agenturl(), "/").top();
// Let's log the agent ID here
server.log("Agent ID: " + agentID);
mm.on("data", dataHandler.bindenv(this));
}
function dataHandler(msg, reply) {
// Log the data from the device. The data is a
// table, so use JSON encodeing method convert to a string
// server.log(http.jsonencode(msg.data));
// Initial State requires the data in a specific structre
// Build an array with the data from our reading.
local events = [];
if ("readings" in msg.data) {
server.log(http.jsonencode(msg.data.readings));
foreach (reading in msg.data.readings) {
events.push({"key" : "temperature", "value" : reading.temperature, "epoch" : reading.time});
events.push({"key" : "humidity", "value" : reading.humidity, "epoch" : reading.time});
events.push({"key" : "accel_x", "value" : reading.accel_x, "epoch" : reading.time});
events.push({"key" : "accel_y", "value" : reading.accel_y, "epoch" : reading.time});
events.push({"key" : "accel_z", "value" : reading.accel_z, "epoch" : reading.time});
}
}
if ("alerts" in msg.data) {
server.log(http.jsonencode(msg.data.alerts));
foreach (alert in msg.data.alerts) {
events.push({"key" : "alert", "value" : alert.msg, "epoch" : alert.time});
}
}
// Send reading to Initial State
iState.sendEvents(events, function(err, resp) {
if (err != null) {
// We had trouble sending to Initial State, log the error
server.error("Error sending to Initial State: " + err);
} else {
// A successful send. The response is an empty string, so
// just log a generic send message
server.log("Reading sent to Initial State.");
}
})
}
}
// RUNTIME
// ---------------------------------------------------
server.log("Agent running...");
// Run the Application
Application();