

Electric Imp, Inc. IMP004M EN 300 328 V2.1.1:2016 Bluetooth LE Radio

Report # ELIM0016.1

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

More: https://www.bis.doc.gov/index.php/forms-documents/regulations-docs/14-commerce-country-chart/fileT

CERTIFICATE OF TEST

Last Date of Test: May 31, 2017 Electric Imp, Inc. Model: IMP004M

Radio Equipment Testing

Standards

Specification	Method
EN 300 328 V2.1.1:2016	EN 300 328 V2.1.1:2016

Results

Method Clause	Test Description	Applied	Results	Comments
5.4.2	RF Output Power	Yes	Pass	
5.4.2	Medium Utilization	No	N/A	Not required for adaptive equipment.
5.4.3	Power Spectral Density	Yes	Pass	
5.4.4	Duty Cycle, Tx-Sequence, Tx-Gap	No	N/A	Not required for adaptive equipment.
5.4.4	Accumulated Transmit Time, Frequency Occupation, Hopping Sequence	No	N/A	Not required unless EUT is a FHSS device.
5.4.5	Hopping Frequency Separation	No	N/A	Not required unless EUT is a FHSS device.
5.4.6	Adaptivity	No	N/A	Not required for devices with output power less than 10 dBm eirp.
5.4.7	Occupied Channel Bandwidth	Yes	Pass	
5.4.8	Transmitter Unwanted Emissions in the OOB Domain	Yes	Pass	
5.4.9	Transmitter Unwanted Emissions in the Spurious Domain	Yes	Pass	
5.4.10	Receiver Spurious Emissions	Yes	Pass	
5.4.11	Receiver Blocking	No	N/A	Not required.
N/A	Geo-Location Capability	No	N/A	Not required. Manufacturer's declaration if implemented.

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

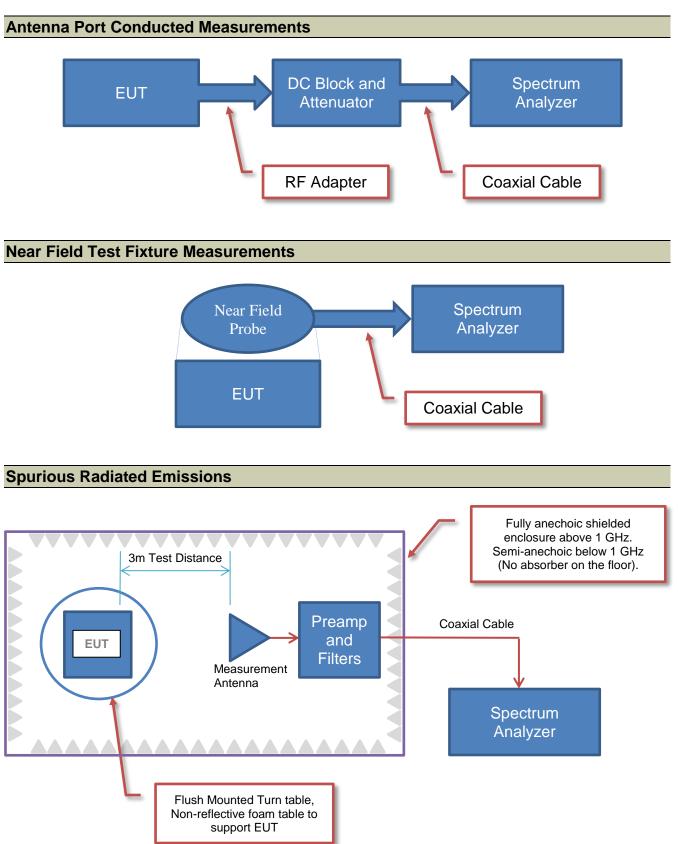
Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations

FACILITIES



California Minnesota New York Labs OC01-17 Labs MN01-10 Labs NY01-04 41 Tesla 9349 W Broadway Ave. 4939 Jordan Rd. Irvine, CA 92618 Brooklyn Park, MN 55445 Elbridge, NY 13060 (949) 861-8918 (612)-638-5136 (315) 554-8214		Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600			
		NV	LAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VC	CI				
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		

Test Setup Block Diagrams

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Electric Imp, Inc.
Address:	5150 El Camino Real, Ste C-31
City, State, Zip:	Los Altos, CA 94022
Test Requested By:	Hugo Fiennes
Model:	IMP004M
First Date of Test:	May 23, 2017
Last Date of Test:	May 31, 2017
Receipt Date of Samples:	May 23, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

802.11bgn SISO radio WiFi module with added Bluetooth radio, with embedded OS that works with the Electric Imp cloud to allow internet connectivity for devices that use this WiFi/BT module.

Testing Objective:

To demonstrate compliance of the Bluetooth LE radio to Article 3.2 of the Radio Equipment Directive.

Configuration ELIM0013-1

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
WiFi Radio Module	Electric Imp, Inc.	IMP004M	0107			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Host Laptop	HP	15-ba009dx	CND71420K3			
Laptop Power Supply	HP	HSTNN-DA40	1WFTLD0CAR63O5H			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB Cable	No	2.0m	No	USB Extension	WiFi Radio Module		
AC Cable	No	1.1m	No	AC Mains	Laptop Power Supply		
DC Cable	No	2.0m	No	Host Laptop	Laptop Power Supply		

Configuration ELIM0013-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
WiFi Radio Module	Electric Imp, Inc.	IMP004M	0104			

Peripherals in test setup boundary						
Description Manufacturer Model/Part Number Serial Number						
Host Laptop	HP	15-ba009dx	CND71420K3			
Laptop Power Supply	HP	HSTNN-DA40	1WFTLD0CAR63O5H			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
USB Cable	No	2.0m	No	USB Extension	WiFi Radio Module		
AC Cable	No	1.1m	No	AC Mains	Laptop Power Supply		
DC Cable	No	2.0m	No	Host Laptop	Laptop Power Supply		
USB Extension Cable	No	2.0m	No	Host Laptop	USB Cable		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2017-05-23	Receiver Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2017-05-26	Transmitter Unwanted Emissions in the Spurious Domain	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2017-05-31	RF Output power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2017-05-31	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2017-05-31	Occupied Channel Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2017-05-31	Transmitter Unwanted Emissions in the OOB Domain.xls	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

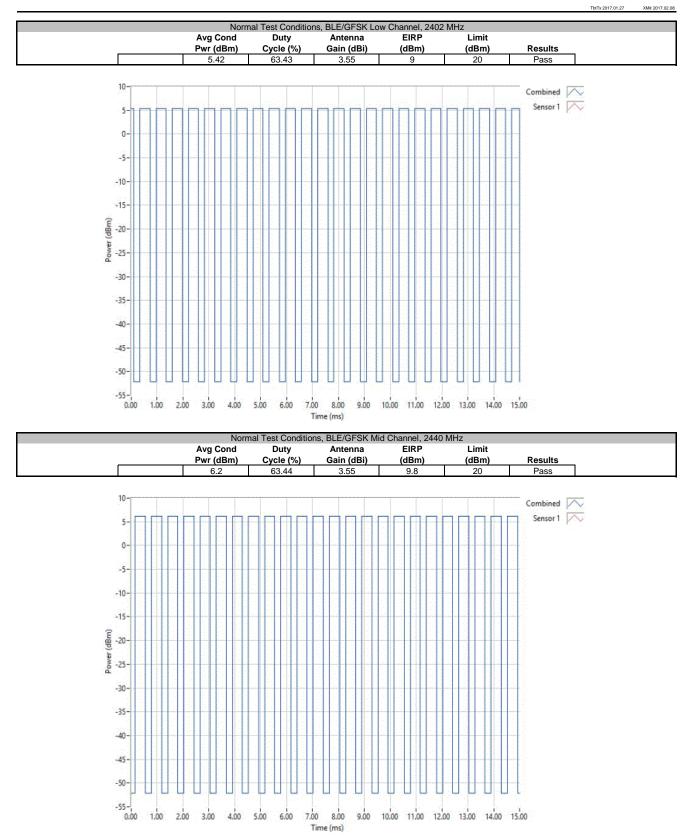
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Power	ETS Lindgren	7002-006	SRB	12/6/2016	12/6/2017
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Attenuator	Fairview Microwave	SA18E-20	TKS	3/6/2017	3/6/2018
Block - DC	Aeroflex	INMET 8535	AMO	3/27/2017	3/27/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Thermometer	Omega Engineering, Inc.	HH311	DUC	10/3/2014	10/3/2017
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	NCR	NCR

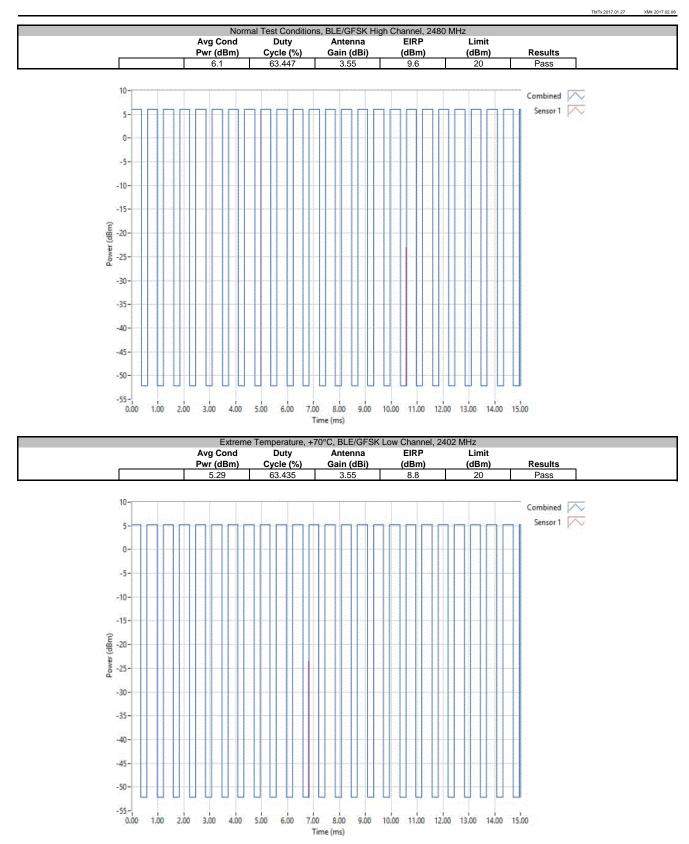
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The power measurement was then made using a direct connection between the RF output of the EUT and an ETSI EN 300 328 compliant RF Power Sensor which only measures across the high time of the burst of the carrier.

The RF output power was measured with the EUT set to the channels and modes called out in the data sheets.

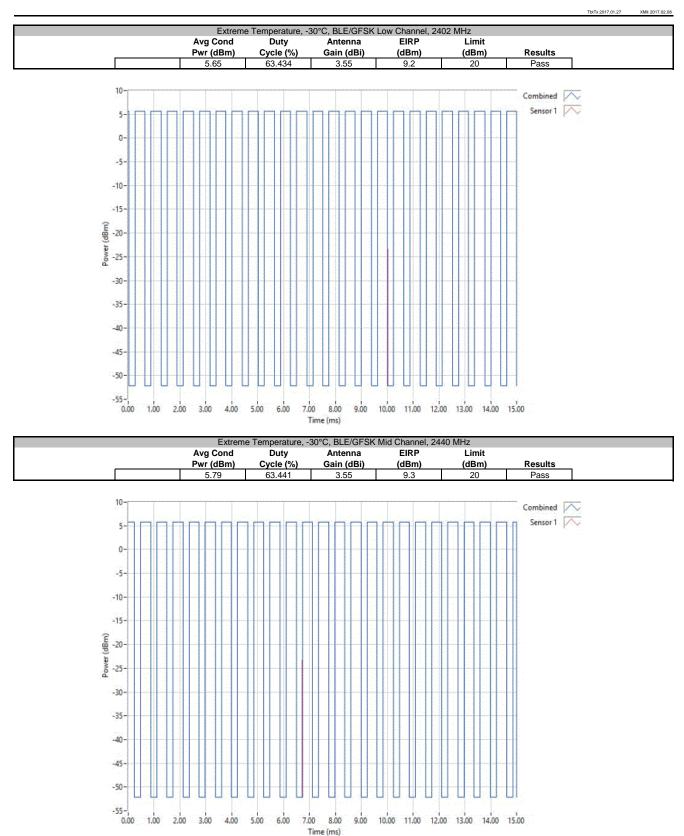

The observed duty cycle was noted but not needed to calculate the EIRP.

EIRP = Max Measured Power + Antenna gain (dBi)

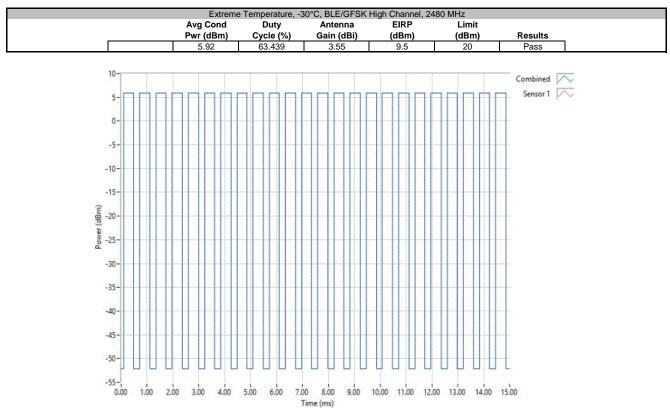

The measurements were made under normal test and extreme test conditions.

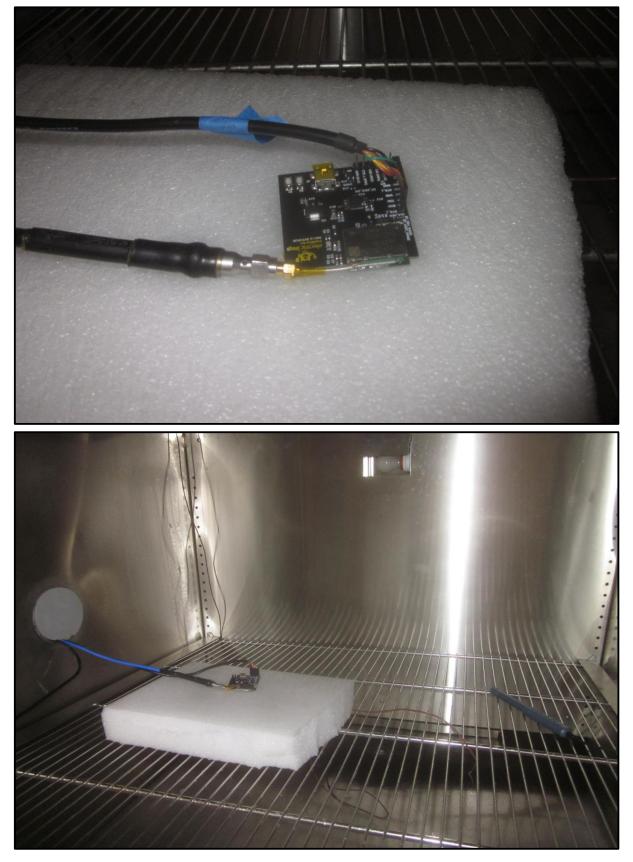
EUT	: IMP004M							Work Order:	EL IM0013	
Serial Number									05/31/17	
	Electric Imp, Inc.							Temperature:		
	Jonathan Dillon						Humidity: 49% RH			
Project								Barometric Pres.:		
	: Mike Tran			Pow	Power: 5VDC via USB Power Job Site: 0C13					
EST SPECIFICAT					Test Method					
N 300 328 V2.1.1	:2016				EN 300 328 V2.1.1:	2016				
OMMENTS										
otal Offset 22.92	dB (20dB pad + DC Block +	coax cable +	client provided pa	atch cable) at 2.4GHz						
	M TEST STANDARD									
EVIATIONS FRO	MILESI STANDARD									
None										
	2			Ano	2 lune					
	2		Signature	And	elin					
	2		Signature	Dio.		Duty	Antenna	FIRP	Limit	
	2		Signature	Duo i	Avg Cond	Duty Cvcle (%)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Results
onfiguration #			Signature	And i		Duty Cycle (%)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Results
Configuration #			Signature	And	Avg Cond					Results
None Configuration # Normal Test Condit	ions	2402 MHz	Signature	And i	Avg Cond Pwr (dBm)	Cycle (%)	Gain (dBi)	(dBm)	(dBm)	
Configuration #	ions BLE/GFSK Low Channel, 2	2402 MHz 2440 MHz	Signature	And a	Avg Cond Pwr (dBm) 5.42	Cycle (%) 63.43	Gain (dBi) 3.55	(dBm) 9	(dBm)	Pass
Configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 3	2402 MHz 2440 MHz	Signature	And i	Avg Cond Pwr (dBm) 5.42 6.2	Cycle (%) 63.43 63.44	Gain (dBi) 3.55 3.55	(dBm) 9 9.8	(dBm) 20 20	Pass Pass
Configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 3	2402 MHz 2440 MHz 2480 MHz	Signature	And i	Avg Cond Pwr (dBm) 5.42 6.2	Cycle (%) 63.43 63.44	Gain (dBi) 3.55 3.55	(dBm) 9 9.8	(dBm) 20 20	Pass Pass
Configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 3 re, +70°C	2402 MHz 2440 MHz 2480 MHz 2402 MHz	Signature	Año i	Avg Cond Pwr (dBm) 5.42 6.2 6.1	Cycle (%) 63.43 63.44 63.447	Gain (dBi) 3.55 3.55 3.55 3.55	(dBm) 9 9.8 9.6	(dBm) 20 20 20	Pass Pass Pass
configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 3 ure, +70°C BLE/GFSK Low Channel, 2	2402 MHz 2440 MHz 2480 MHz 2402 MHz 2402 MHz	Signature	And a	Avg Cond Pwr (dBm) 5.42 6.2 6.1 5.29	Cycle (%) 63.43 63.44 63.447 63.435	Gain (dBi) 3.55 3.55 3.55 3.55 3.55	(dBm) 9 9.8 9.6 8.8	(dBm) 20 20 20 20	Pass Pass Pass Pass
Configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 1 ure, +70°C BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 2 BLE/GFSK High Channel, 2 re, -30°C	2402 MHz 2440 MHz 2480 MHz 2402 MHz 2440 MHz 2480 MHz	Signature	And i	Avg Cond Pwr (dBm) 5.42 6.2 6.1 5.29 5.96	Cycle (%) 63.43 63.44 63.447 63.435 63.435 63.44	Gain (dBi) 3.55 3.55 3.55 3.55 3.55 3.55	(dBm) 9 9.8 9.6 8.8 9.5	(dBm) 20 20 20 20 20 20	Pass Pass Pass Pass Pass Pass
configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 3 ure, +70°C BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 3 BLE/GFSK High Channel, 3	2402 MHz 2440 MHz 2480 MHz 2402 MHz 2440 MHz 2480 MHz	Signature	Año i	Avg Cond Pwr (dBm) 5.42 6.2 6.1 5.29 5.96	Cycle (%) 63.43 63.44 63.447 63.435 63.435 63.44	Gain (dBi) 3.55 3.55 3.55 3.55 3.55 3.55	(dBm) 9 9.8 9.6 8.8 9.5	(dBm) 20 20 20 20 20 20	Pass Pass Pass Pass Pass Pass
Configuration #	ions BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 1 ure, +70°C BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 2 BLE/GFSK High Channel, 2 re, -30°C	2402 MHz 2440 MHz 2480 MHz 2402 MHz 2402 MHz 2480 MHz 2480 MHz 2480 MHz	Signature	Año i	Avg Cond Pwr (dBm) 5.42 6.2 6.1 5.29 5.96 6.49	Cycle (%) 63.43 63.44 63.447 63.445 63.445 63.44 63.451	Gain (dBi) 3.55 3.55 3.55 3.55 3.55 3.55 3.55	(dBm) 9 9.8 9.6 8.8 9.5 10	(dBm) 20 20 20 20 20 20 20	Pass Pass Pass Pass Pass Pass





TbtTx 2017.01.27 XMit 2017.02.08





TbtTx 2017.01.27 XMit 2017.02.08

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

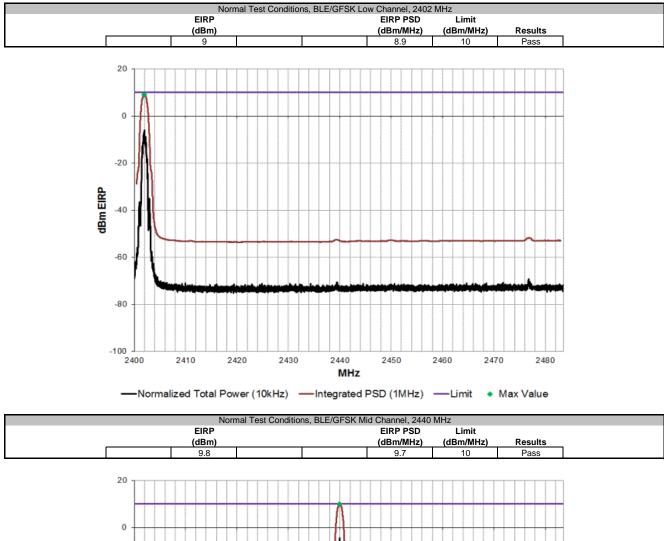
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Attenuator	Fairview Microwave	SA18E-20	TKS	3/6/2017	3/6/2018
Block - DC	Aeroflex	INMET 8535	AMO	3/27/2017	3/27/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

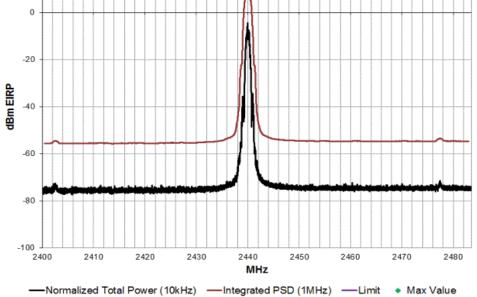
TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The Power Spectral Density was measured with the EUT set to the channels and modes called out in the data sheets.

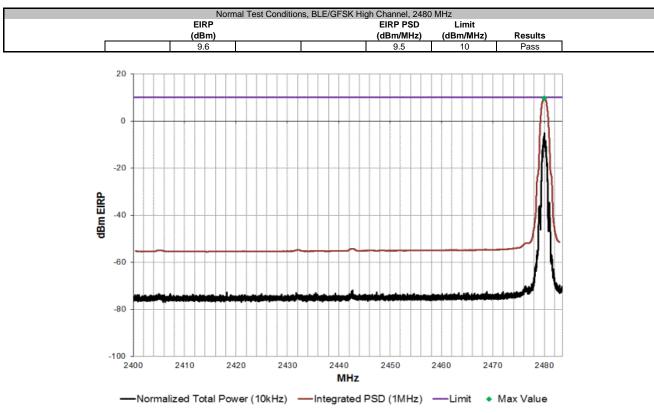
The EUT antenna gain and duty cycle were used to calculate the output power of the EUT, and included in the calculations for Power Spectral Density. The measurements were made under normal test conditions.

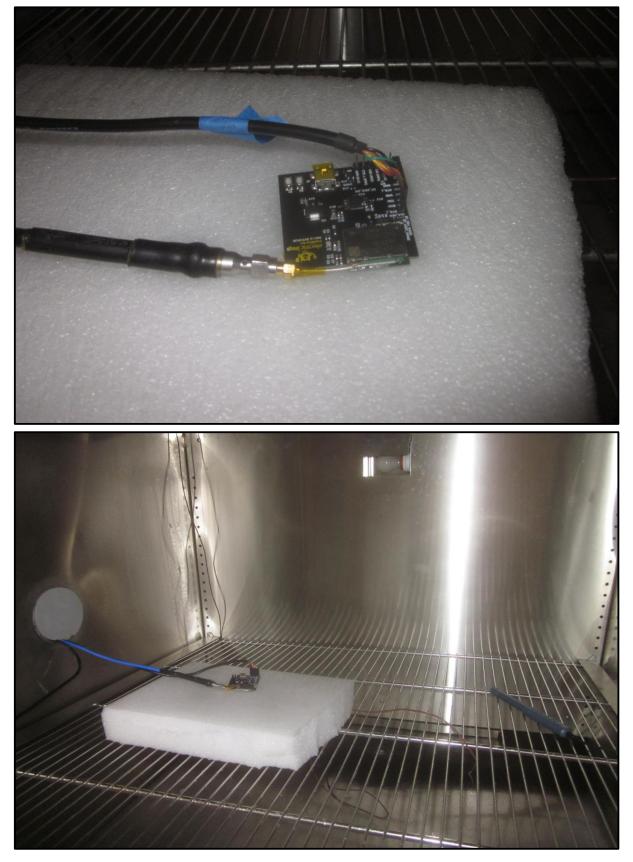
The spectrum analyzer was set to a 10kHz RBW and 30kHz VBW, while utilizing an RMS detector. A total of 8350 points were captured across the spectrum. The traces were captured both graphically and in point format. The data points were normalized based on antenna power measurements located elsewhere in this report.


The reported Power Spectral Density is the highest sum for any 1MHz window in the specified spectrum.



					TbtTx 2017.01.27	
EUT: IMP	004M			Work Order:		XMit 2017
Serial Number: 0104					05/31/17	
Customer: Elec				Temperature:		
Attendees: Jon				Humidity:		
Project: Non	10			Barometric Pres.:	1014 mbar	
Tested by: Mike			Power: 5VDC via USB Power	Job Site:	OC13	
TEST SPECIFICATIONS	5		Test Method			
EN 300 328 V2.1.1:2016			EN 300 328 V2.1.1:2016			
COMMENTS						
	ST STANDARD					
DEVIATIONS FROM TES	2		And duy			
None		Ire				
None	2	re	EIRP	EIRP PSD (dBm/MH1)	Limit (dBm/MHz)	Posulte
None Configuration #	2	re		EIRP PSD (dBm/MHz)	Limit (dBm/MHz)	Results
Ione Configuration #	2 Signatu	re	EIRP (dBm)	(dBm/MHz)	(dBm/MHz)	
None Configuration # Normal Test Conditions BLE	2	re	EIRP			Results Pass Pass


TbtTx 2017.01.27 XMit 2017.02.08



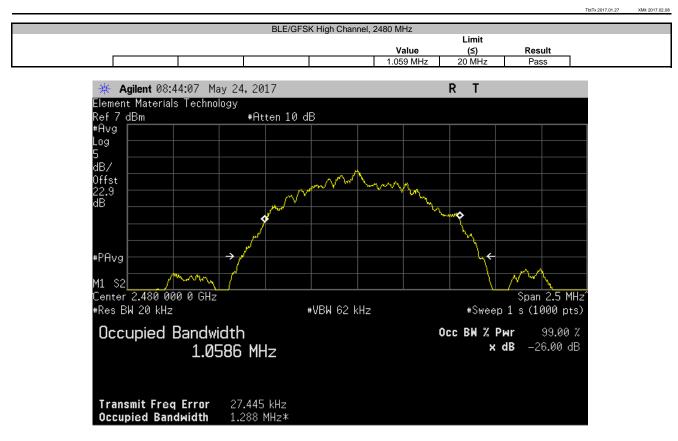
TbtTx 2017.01.27 XMit 2017.02.08

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

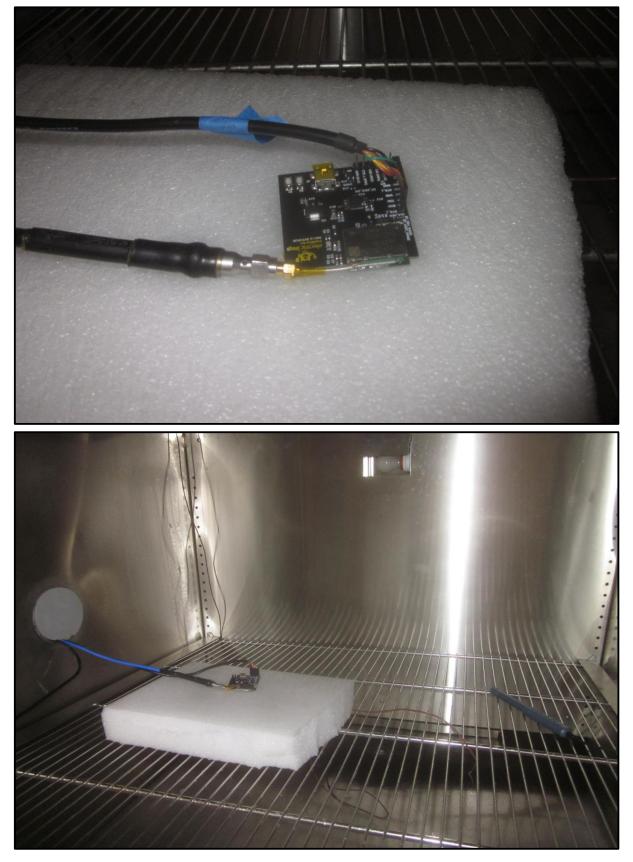
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	3/27/2017	3/27/2018
Attenuator	Fairview Microwave	SA18E-20	TKS	3/6/2017	3/6/2018
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018


TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The occupied channel bandwidth was measured with the EUT set to the channels and modes as listed on the data sheets. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. The 99% occupied bandwidth measurement was made using the Agilent built in Occupied Bandwidth measurement function. The analyzer was set to a span equaling 2 times the nominal bandwidth, with a RBW of 1% of the span, VBW of 3 times the RBW, and utilizing an RMS detector.

				TbtTx 2017.01.27	XMit 2017.02
EUT: IN	MP004M		Work Order:		
Serial Number: 01	104			05/31/17	
Customer: El	lectric Imp, Inc.		Temperature:		
Attendees: Jo	onathan Dillon		Humidity:	49% RH	
Project: N			Barometric Pres.:	1014 mbar	
Tested by: M	like Tran	Power: 5VDC via USB Power	Job Site:	OC13	
TEST SPECIFICATION	NS	Test Method			
EN 300 328 V2.1.1:201	16	EN 300 328 V2.1.1:2016			
COMMENTS					
	TEST STANDARD				
DEVIATIONS FROM T	rest standard				
None	2 Signature	Dive duy			
None	2	Dove Mun		Limit	
None	2	Down Ming	Value	Limit (≲)	Result
None	2 Signature	Down Mary	Value 1.058 MHz		Result Pass
	2 Signature	Dove Muy		(≤)	



XMit 2017.02.08

TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Aeroflex	INMET 8535	AMO	3/27/2017	3/27/2018
Attenuator	Fairview Microwave	SA18E-20	TKS	3/6/2017	3/6/2018
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The measurement was made using a RMS detector, with a 1 MHz RBW and 3 MHz VBW. The frequency ranges of the limit steps are dependent on the measured Occupied Channel Bandwidth (contained elsewhere in the

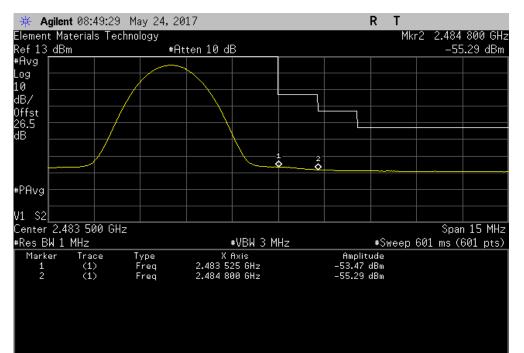
The declared antenna assembly gain (dBi) was added to the measurement system offset. The Screen Captures show compliance to each OOB steps/spans as defined in the Transmit Mask.

TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN

				TbtTx 2017.01.27	XMit 2017.02.08
EUT: IMP004M			Work Order:	ELIM0013	
Serial Number: 0104			Date:	05/31/17	
Customer: Electric Imp, Inc.			Temperature:	21.3 °C	
Attendees: Jonathan Dillon			Humidity:	49% RH	
Project: None		Baro	ometric Pres.:	1014 mbar	
Tested by: Mike Tran	Power: 5VDC via USB Power		Job Site:	OC13	
TEST SPECIFICATIONS	Test Method				
EN 300 328 V2.1.1:2016	EN 300 328 V2.1.1:2016				
COMMENTS					
Total Offset 22.92dB (20dB pad + DC Block + coax cable + client provided patch	cable) at 2.4GHZ				
DEVIATIONS FROM TEST STANDARD					
None					
Configuration # 2 Signature	And duy				
	Value (dBm/MHz)	Limit (dBm/MHz) (Value (dBm/MHz)	Limit (dBm/MHz)	Result
BLE/GFSK Low Channel, 2402 MHz					Result Pass

Report No. ELIM0016.1

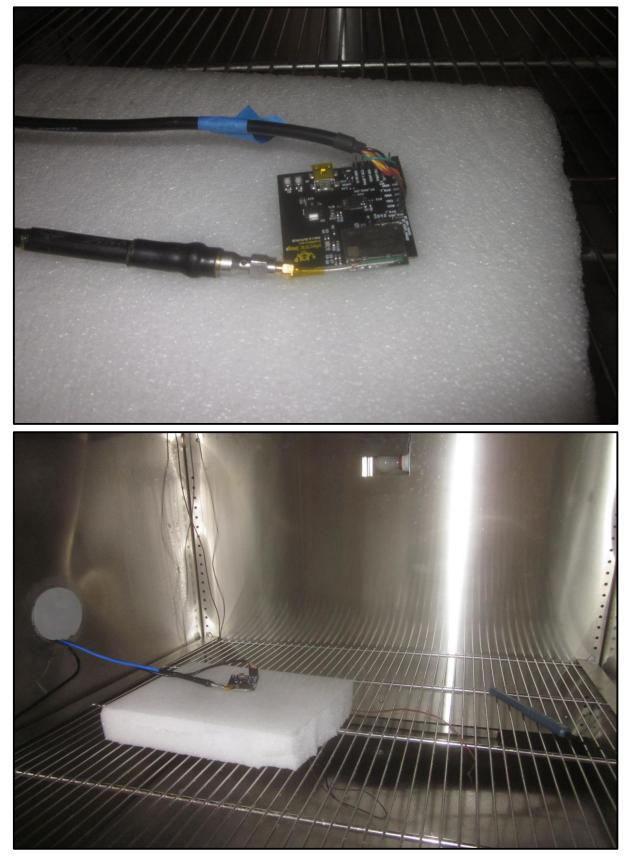
TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN



XMit 2017.02.08

TbtTx 2017.01.27

BLE/GFSK Low Channel, 2402 MHz Value Limit Value Limit (dBm/MHz) (dBm/MHz) (dBm/MHz) (dBm/MHz) Result 35.71 -10 -54.79 -20 Pass 🔆 Agilent 09:02:32 May 24, 2017 R T Mkr2 2.398 683 GHz Element Materials Technology Ref 12 dBm #Atten 10 dB -54.79 dBm #Avg Log 10 dB/ 0ffst 26.5 dB \$ #PAvg V1 S2 Center 2.400 000 GHz Span 10 MHz #Res BW 1 MHz ₩VBW 3 MHz #Sweep 601 ms (601 pts) X Axis 2.399 983 GHz 2.398 683 GHz Amplitude -35.71 dBm -54.79 dBm Trace (1) (1) Marker Type Freq 1 2 Freq


BLE/GFSK High Channel, 2480 MHz								
	Value Limit Value Limit							
			(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	(dBm/MHz)	Result	
			-53.47	-10	-55.29	-20	Pass	

TRANSMITTER UNWANTED EMISSIONS IN THE OOB DOMAIN

XMit 2017.02.08

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz

POWER SETTINGS INVESTIGATED

5VDC via USB Power

CONFIGURATIONS INVESTIGATED

ELIM0013 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 12750 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	36 mo
Power Sensor	Hewlett Packard	8481	SQP	1/26/2017	12 mo
Meter - Power	Hewlett Packard	E4418A	SPA	1/26/2017	12 mo
Cable	ESM Cable Corp.	8-18GHz cables	OCY	5/15/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	JSDWK42-18004000-60-5P	PAN	1/4/2017	12 mo
Cable	ESM Cable Corp.	1-8GHz cables	OCX	5/15/2017	12 mo
Cable	D-Coax	None	OC4	1/4/2017	12 mo
Antenna - Double Ridge	A.H. Systems, Inc.	SAS-574	AXV	5/3/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	8/15/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	10/17/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	8/15/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIR	6/23/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHX	NCR	0 mo
Antenna - Standard Gain	EMCO	3160-08	AHK	NCR	0 mo
Cable	ESM Cable Corp.	30-1GHz cables	OCW	5/15/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAD	8/15/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	10/25/2016	12 mo

TEST DESCRIPTION

The EUT was operated in a worst-case configuration in transmit mode. The spectrum was scanned from 30 MHz to 12.75 GHz with the EUT set to low and high transmit frequencies. The EUT was transmitting at its maximum data rate. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna and its gain (dBi); the effective radiated power for each radiated spurious emission was determined.

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

						1-		1		EmiR5 2017.01.25		PSA-ESCI 2017.01.
Wo	ork Order:				Date:	05/2	5/17	ļ	17			
	Project:				perature:	22.4		4	Non	> Muy		
	Job Site:				Humidity:	44.3%						
Seria	I Number:		07	Barome	tric Pres.:	1014	mbar		Tested by:	Mike Tran		
		IMP004M										
Conf	iguration:	1										
C	Customer:	Electric Imp	o, Inc.									
		Jonathan D										
		5VDC via L										
		Tropositio			02MHz Hid	gh Ch 39-24	80MHz					
Operati	ing Mode:		9		0	9.1 0.1 00 = 1						
D	eviations:	None										
Co	omments:	TX Power v	alue = 5.									
Test Speci	ifications					1	Test Meth	od				
EN 300 328		016						28 V2.1.1:20)16			
Run #	29	Test Dis	tance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	F	Pass
0 т								· · ·				
0												
-10 -												
-20 -												
-30 -												
Eg -40 -							•		*			
-50 -									\$			
-60 -										•		
-70 -												
-80 🕹												
10	0		100			1000 MHz			10000	PK	◆ AV	100000
	EUT (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)		Comments	3
	2483.967	1.0	345.0	Vert	AV	1.98E-08	-47.0	-30.0	-17.0	EUT Vert, Hig	h Ch	

-30.0

-30.0

-30.0

-30.0

-17.1

-17.2

-17.2

-17.2

-47.1

-47.2

-47.2

-47.2

EUT Ver, High Ch

EUT Hor, Low Ch

EUT Vert, Low Ch

EUT on Side, High Ch

2.4

1.0

1.8

1.0

259.0

279.0

177.0

196.0

Vert

Horz

Vert

Vert

AV

AV

AV

AV

1.94E-08

1.89E-08

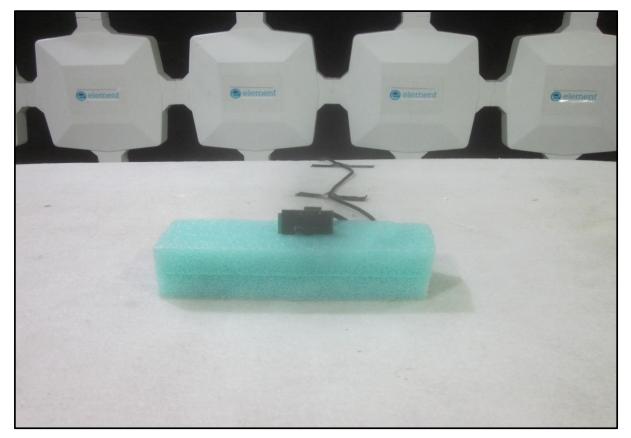
1.89E-08

1.89E-08

7439.495

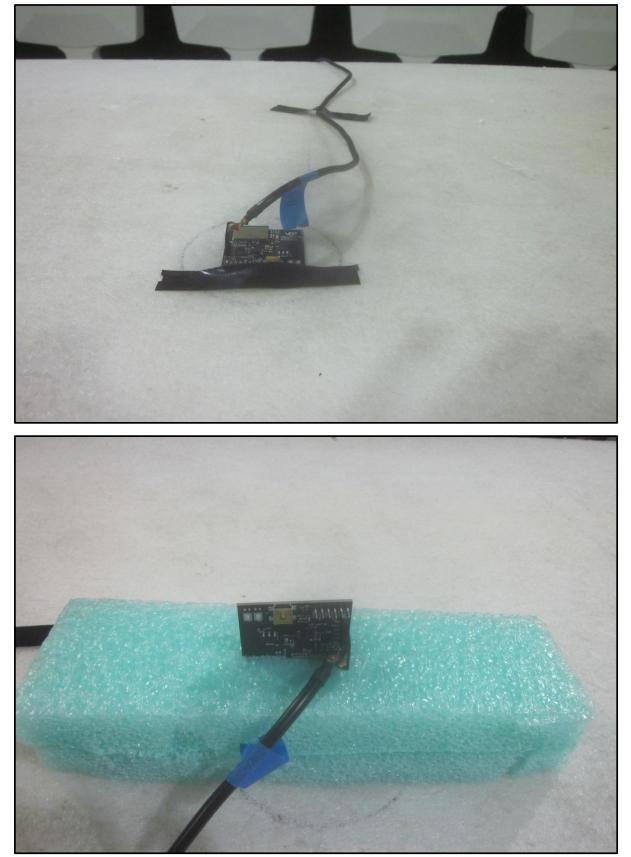
2388.703

2387.833


2484.107

EUT (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	EIRP (Watts)	EIRP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
2483.600	1.2	85.0	Horz	AV	1.89E-08	-47.2	-30.0	-17.2	EUT Hor, High Ch
2484.670	1.0	359.0	Horz	AV	1.85E-08	-47.3	-30.0	-17.3	EUT Vert, High Ch
2483.860	2.6	124.0	Vert	AV	1.85E-08	-47.3	-30.0	-17.3	EUT Hor, High Ch
2484.703	1.0	7.0	Horz	AV	1.85E-08	-47.3	-30.0	-17.3	EUT on Side, High Ch
7439.500	1.0	276.0	Horz	AV	1.61E-08	-47.9	-30.0	-17.9	EUT Hor, High Ch
7439.610	1.1	76.0	Horz	AV	1.34E-08	-48.7	-30.0	-18.7	EUT Ver, High Ch
7439.305	1.0	164.0	Vert	AV	1.02E-08	-49.9	-30.0	-19.9	EUT Hor, High Ch
7438.685	3.3	169.0	Horz	AV	7.20E-09	-51.4	-30.0	-21.4	EUT on Side, High Ch
7438.920	1.0	8.0	Vert	AV	7.03E-09	-51.5	-30.0	-21.5	EUT on Side, High Ch
4803.705	1.0	329.0	Horz	AV	1.81E-09	-57.4	-30.0	-27.4	EUT Hor, Low Ch
4803.870	1.5	164.0	Vert	AV	1.06E-09	-59.7	-30.0	-29.7	EUT Ver, Low Ch
4958.880	1.0	158.0	Horz	AV	1.04E-09	-59.8	-30.0	-29.8	EUT Hor, High Ch
4958.855	1.6	17.0	Vert	AV	1.02E-09	-59.9	-30.0	-29.9	EUT Ver, High Ch
19216.120	1.0	186.0	Horz	AV	8.26E-10	-60.8	100.0	-160.8	EUT Hor, Low Ch
19216.580	1.0	113.0	Vert	AV	8.07E-10	-60.9	100.0	-160.9	EUT Vert, Low Ch
12397.540	1.0	231.0	Vert	AV	3.69E-10	-64.3	-30.0	-34.3	EUT Vert, High Ch
12397.630	1.3	321.0	Horz	AV	2.80E-10	-65.5	-30.0	-35.5	EUT Hor, High Ch
12011.500	3.1	121.0	Vert	AV	2.28E-10	-66.4	-30.0	-36.4	EUT Ver, Low Ch
12011.140	1.3	277.0	Horz	AV	2.22E-10	-66.5	-30.0	-36.5	EUT Horz, Low Ch

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN


PSA-ESCI 2017.01.26

TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz

POWER SETTINGS INVESTIGATED

5VDC via USB Power

CONFIGURATIONS INVESTIGATED

ELIM0013 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 12750 MHz

SAMPLE CALCULATIONS

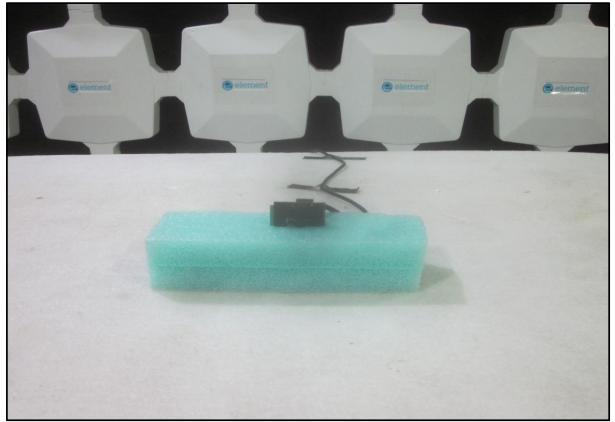
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

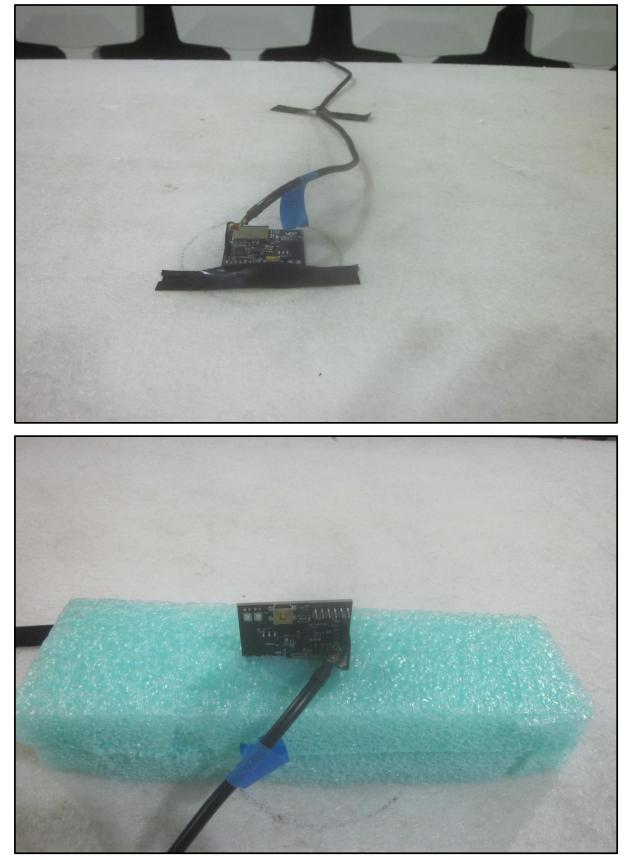
Description	Manufacturer	Model	ID	Last Cal.	Interval
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	36 mo
Power Sensor	Hewlett Packard	8481	SQP	1/26/2017	12 mo
Meter - Power	Hewlett Packard	E4418A	SPA	1/26/2017	12 mo
Cable	ESM Cable Corp.	8-18GHz cables	OCY	5/15/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	JSDWK42-18004000-60-5P	PAN	1/4/2017	12 mo
Cable	ESM Cable Corp.	1-8GHz cables	OCX	5/15/2017	12 mo
Cable	D-Coax	None	OC4	1/4/2017	12 mo
Antenna - Double Ridge	A.H. Systems, Inc.	SAS-574	AXV	5/3/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVP	8/15/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVL	10/17/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVJ	8/15/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AIR	6/23/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AHX	NCR	0 mo
Antenna - Standard Gain	EMCO	3160-08	AHK	NCR	0 mo
Cable	ESM Cable Corp.	30-1GHz cables	OCW	5/15/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	PAD	8/15/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	10/25/2016	12 mo

TEST DESCRIPTION

The EUT was operated in a worst-case configuration in receive mode. The spectrum was scanned from 30 MHz to 12.75 GHz with the EUT set to low and high receive frequencies. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity. The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to each of the highest spurious emissions. A signal generator was connected to the dipole (horn antenna for frequencies above 1 GHz), and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna and its gain (dBi); the effective radiated power for each radiated spurious emission was determined.


Work Order: ELM0013 Date: 05/26/17 Job Site: OC07 Humidity: 47.8% RH Mutual Serial Number: 0107 Barometric Press: 1017 mbar Tested by: [Mike Tran EUT: IMPOQUAL Configuration: 1 Configuration: 1 Custome: Electric Imp. Inc. Attendes Jonathan Dilon Electric Imp. Inc. Attendes Jonathan Dilon Electric Imp. Inc. Attendes Imp. Inc. Operating Mode: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Imp. Inc. Imp. Inc. Operating Mode: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Imp. Inc. Imp. Inc. Stopeoffications Tx Prover value = 5. Test Method Imp. Inc. Imp. Inc. Its Specifications Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass Imp. Inc. Imp. Inc. Imp. Inc. Imp. Inc. Imp. Inc. Imp. Inc. Imp. Inc. Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass<										EmiR5 2017.01.25		PSA-ESCI 2017.01		
Job Site: OC07 Humidity: 47.8% RH Sorial Number: 0107 Barometric Press: 1017 mbar Tested by: Mike Tran EUT: IMPOQAM Image: Mike Tran Image: Mike Tran Image: Mike Tran EUT: MPOQAM Image: Mike Tran Image: Mike Tran Image: Mike Tran Configuration: Image: Mike Tran Image: Mike Tran Image: Mike Tran Image: Mike Tran Oprating Moo: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Image: Mike Tran Image: Mike Tran Oprating Moo: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Image: Mike Tran Image: Mike Tran St Specifications Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Image: Mike Tran Image: Mike Tran None Image: Mike Tran Image: Mike Tran Image: Mike Tran Image: Mike Tran V300 328 V2.1.1:2016 Image: Mike Tran Image: Mike Tran Image: Mike Tran Image: Mike Tran Mon # 51 Test Distance (m) 3 Antenna Height(s) I to 4(m) Results Peas Mon # Image: Mi	Wo				Date:				0	- 1				
Serial Number: 0107 Barometric Pres: 1017 mbar Tested by: [Mike Tran Configuration: 1				Ter	mperature:				And duy					
EUT: IMPOORM Configuration: I Custome: Electric Imp. Inc. Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviation: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviation: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Tomments: Transmitting BLE at Low Ch 0-2402MHz Tomments: Transmitting BLE														
Configuration: 1 Custom: EUT Power: EVEX ovaluate 101100 EUT Power: SVDC via USB Power Operating Mode: Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviations: None TX Power value = 5. TX Power value = 5. State of the s	Serial			Barome	etric Pres.:	1017	mbar		Tested by	: Mike Tran				
Customer Electric imp, Inc. Attendes Jonathan Dilion EUT Power SVDC via USB Power Operating Mode Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviations None TComments TX Power value = 5. St Specifications T N 300 328 V2.1.1:2016 EN 300 328 V2.1.1:2016														
Attendes: Jonathan Dillon EUT Power Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviations: None TX Power value = 5. TX Power value = 5. St Specifications TX Power value = 5. It St Specifications Test Method N 300 328 V2.1.1:2016 EN 300 328 V2.1.1:2016	Config	guration:	1											
EUT Power: SVDC via USB Power Operating Mode: None TX Power value = 5. Comments: TX Power value = 5. Test Method EN 300 328 V2.1.1:2016 Run # 51 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 0	С	ustomer:	Electric Imp, Inc.											
Operating Mode Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviations: None TX Power value = 5. Test Method StS Specifications Test Method Bit Specifications Test Method EN 300 328 V2.1.1:2016 EN 300 328 V2.1.1:2016														
Operating Mode Transmitting BLE at Low Ch 0-2402MHz, High Ch 39-2480MHz Deviations: None TX Power value = 5. Test Method StS Specifications Test Method Bit Specifications Test Method EN 300 328 V2.1.1:2016 EN 300 328 V2.1.1:2016	EU	T Power:	5VDC via USB Pow	er										
Deviations: TX Power value = 5. rest Method N 300 328 V2.1.1:2016 Run # 51 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 0 <t< th=""><th></th><th></th><th></th><th></th><th>402MHz, Hig</th><th>h Ch 39-24</th><th>80MHz</th><th></th><th></th><th></th><th></th><th></th></t<>					402MHz, Hig	h Ch 39-24	80MHz							
Comments: Test Specifications Test Method N 300 328 V2.1.1:2016 EN 300 328 V2.1.1:2016 Run # 51 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 0 <th>De</th> <th>viations:</th> <th colspan="12">None</th>	De	viations:	None											
N 300 328 V2.1.1:2016 Run # 51 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass	Co	mments:												
Run # 51 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass	est Specif	ications	1				Test Meth	od						
			016				EN 300 32	8 V2.1.1:2	016					
		51	Test Distance (m) 3	Antenna	Height(s)		1 to 4(m)		Results	P	ass		
	80													
	70 —													
	60													
	50													
30 20 10 10 100 100 1000 MHz PK + AV • QP	50 -													
30 20 10 10 100 100 1000 MHz PK + AV • QP	ε													
30 20 10 10 100 100 1000 MHz PK + AV • QP	≥ ₄₀ ⊥													
30 20 10 10 100 100 1000 MHz PK + AV • QP	B								€					
	P													
	30 -													
10 0 10 10 100 100 1000 MHz PK + AV • QP														
10 0 10 10 100 100 1000 MHz PK + AV • QP														
10 0 10 10 100 100 1000 MHz PK + AV • QP	20 +													
0 10 100 100 1000 1000 1000 1000 10000 10000 10000 10000 MHz PK + AV • QP														
0 10 100 100 1000 1000 1000 1000 10000 10000 10000 10000 MHz PK + AV • QP														
10 100 1000 10000 10000 100000 MHz ■ PK ◆ AV ● QP	10 🕂											++		
10 100 1000 10000 10000 100000 MHz ■ PK ◆ AV ● QP														
10 100 1000 10000 10000 100000 MHz ■ PK ◆ AV ● QP														
MHz PK + AV • QP														
	10		10	0		1000			10000			100000		
						MHz								
Polarity/										PK	AV	- QP		
							Polarity/							

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7438.675	28.5	12.0	3.0	4.0	3.0	0.0	Horz	AV	0.0	40.5	48.2	-7.7	EUT Hor, High Ch
7438.550	28.4	12.0	1.0	142.0	3.0	0.0	Vert	AV	0.0	40.4	48.2	-7.8	EUT Vert, High Ch
7207.490	29.1	9.9	1.5	171.0	3.0	0.0	Horz	AV	0.0	39.0	48.2	-9.2	EUT Hor, Low Ch
7207.375	29.1	9.9	1.0	348.0	3.0	0.0	Vert	AV	0.0	39.0	48.2	-9.2	EUT Vert, Low Ch
4958.505	28.0	4.4	1.0	175.0	3.0	0.0	Horz	AV	0.0	32.4	48.2	-15.8	EUT Hor, High Ch
4958.515	28.0	4.4	3.8	256.0	3.0	0.0	Vert	AV	0.0	32.4	48.2	-15.8	EUT Vert, High Ch
4803.405	28.3	3.6	1.0	306.0	3.0	0.0	Horz	AV	0.0	31.9	48.2	-16.3	EUT Hor, Low Ch
4804.250	28.3	3.6	1.0	256.0	3.0	0.0	Vert	AV	0.0	31.9	48.2	-16.3	EUT Vert, Low Ch


PSA-ESCI 2017.01.26

PSA-ESCI 2017.01.26

