
Sq
ui

rr
el

 L
an

gu
ag

e
Re

fe
re

nc
e

Sh
ee

t Tables
Tables comprise key-value pairs called slots which can hold any variable type, function or class
instance.

Functions
Function parameters are implicitly local.
Functions can also be stored in variables: local myFunction = function(param){. . . }

Flow Control

Page 1 of 2

Variable Types
Squirrel variables are dynamically typed with no type declarations.

Assign Variables
Variables must be assigned as global or local to the main program or a function.

Once assigned, all variables can be re-assigned with the = operator. Within a class definition, global variable
assignments require the scope operator, ::, be placed before the name.

Semi-colons
Semi-colons at the end of lines are optional unless the line of includes multiple statements.

Operators

Text © 2014-18 Electric Imp, Inc. Squirrel © 2004-18 Alberto Demichelis. Issue 1.3

Integer 32-bit signed. Stored as a value.

Float 32-bit signed. Stored as a value.

Bool Logical value: true or false. Stored as a value.

String Not null terminated. May contain null bytes. Characters can be accessed by index. Precede
literals with @ for a verbatim string. Immutable. Stored as a reference.

Array One-dimensional, specified/indexed using square brackets. Mutable. May contain values of
any type simultaneously. Stored as a reference.

Table Collects key-value pairs (called ‘slots’). Specified by braces. Keys are typically strings, but may
be of any Squirrel data type. Values may be accessed with index notation, eg. myVariable =
myTable[true]. Mutable. Stored as a reference.

Blob Custom binary data. Accessed via read/write pointer. Mutable. Stored as a reference.

Create a Global Variable Create a Local Variable

myVariable <- 42 local myVariable = 42

myVariable <- 23.75 local myVariable = 23.75

myVariable <- true local myVariable = true

myVariable <- “I am an Electric Imp” local myVariable = “I am an Electric Imp”

myVariable <- [0, 1, 2, 3, 4] local myVariable = [0, 1, 2, 3, 4]

myVariable <- {“A”:65 , “B”:66 , “C”:67} local myVariable = {“A”:65 , “B”:66 , “C”:67}

myVariable <- {A = 65, B = 66, C = 67} local myVariable = {A = 65, B = 66, C = 67}

Function, No Parameters Function, Parameters Function, Parameters with Default
Values

function myFunction()
{ . . . }

function myFunction(param1, param2)
{ . . . }

function myFunction(param1=42,
param2=“I am an Electric Imp”)
{ . . . }

Create a Slot and Assign a Value Re-assign a Value Delete a Slot

local myTable = {};
myTable.keyOne <- “I am an Electric Imp”;

myTable.keyOne = false; local value = delete
 myTable.keyOne;

myTable[“keyOne”] <- “I am an Electric Imp”; myTable[“keyOne”] = false;

foreach (itemVariable in collectionVariable)
{ . . . }

foreach (indexVariable, itemVariable in collectionVariable)
{ . . . }

for (local index = 0 ; index < maxValue ; index += increment)
{ . . . }

do
{ . . . }
while (CONDITION);

while (CONDITION)
{ . . . }

http://developer.electricimp.com/squirrel/squirrelsheet/

/= Compact division

*= Compact multiplication

%= Compact modulo

Relational

! NOT

!= Not equal

|| OR

&& AND

== Equal

Arithmetic

+ Addition

– Subtraction

/ Division

* Multiplication

% Modulo

Compact Arithmetic

+= Compact addition

–= Compact subtraction

<= Less than or equal

>= Greater than or equal

> Greater than

< Less than

Misc

:: Scope resolution

<=> Three-way compare

?: Conditional

, Combination

Bitwise

& AND

| OR

^ Exclusive OR

~ NOT

>> Bit-shift right

<< Bit-shift left

>>> Unsigned bit-shift right

Define a Class
Class properties are unique to each class instance by default. The static keyword can be used to change
this: a static property belongs to the class itself and so is shared by all instances. Properties can be
initialized in a class declaration, but the initializer is evaluated only once and its value assigned to all
instances. For reference-type properties, including arrays and tables, that means that all instances initially
refer to the same object. To have an initializer re-evaluated afresh for each instance, initialize the property in
a constructor function. All methods and properties are public; Squirrel does not support private class
members.

Instantiate a Class

local myInstance = MyClass();
local myInstance = MyClass(constructorParameterOne, constructorParameterTwo);
myInstance <- MyClass();

Accessing Instance Properties

myInstance.propertyOne = 42;
myInstance.propertyThree = “I am an Electric Imp”;
local myVariable = myInstance.propertyOne;
myVariable <- myInstance.propertyOne;

Calling Instance Methods

myInstance.methodOne();
myInstance.methodTwo(methodParameterOne, methodParameterTwo);

The Context Object
Squirrel passes a hidden parameter to all methods and other function calls which contains a reference to
the calling context. Within the called method, this reference is accessed through the variable this. When
registering methods as callbacks, it is often useful to provide the function – which, if called as a callback will
be called out of context – with a suitable context object. This is done with the method bindenv() (‘bind to
environment’). This creates a closure combining the method and the content object passed to bindenv() as
a parameter:

imp.wakeup(2.0, aFunction.bindenv(this));

Constants

Constants are denoted by the keyword const.

Comments

// This is a single-line comment
/* This is a
multi-line
comment */

Conditional Structures

Text © 2014-18 Electric Imp, Inc. Squirrel © 2004-18 Alberto Demichelis. Issue 1.3Sq
ui

rr
el

 L
an

gu
ag

e
Re

fe
re

nc
e

Sh
ee

t A Class without a Constructor

class MyClass {
 // Scalar property (unique by default)
 propertyOne = 42;

 // Scalar property (shared by all instances)
 static propertyTwo = true;

 // Non-scalar property (shared by all instances but may be re-initialized by an instance)
 propertyThree = “I am an Electric Imp”;

 // Non-scalar property (shared by all instances)
 static propertyFour = {“A”:65 , “B”:66 , “C”:67};

 // Methods
 function methodOne() {
 . . .
 }

 function methodTwo(methodTwoParameterOne, methodTwoParameterTwo) {
 . . .
 }
}

A Class with a Constructor Function

class MyClass {
 // Scalar property (unique by default)
 propertyOne = 42;

 // Scalar property (shared by all instances)
 static propertyTwo = true;

 // Non-scalar properties (shared by all instances but may be re-initialized by an instance)
 propertyThree = “I am an Electric Imp”;

 // Non-scalar property (shared by all instances)
 static propertyFour = [0, 1, 2, 3, 4];

 // Non-scalar properties initialized by Constructor are unique – must be declared null
 propertyFive = null;
 propertySix = null;

 // Constructor function
 constructor(constructorParameterOne, constructorParameterTwo) {
 propertyFive = constructorParameterOne;
 propertySix = constructorParameterTwo;
 }

 // Methods
 function methodOne() {
 . . .
 }

 function methodTwo(methodTwoParameterOne, methodTwoParameterTwo) {
 . . .
 }
}

Page 2 of 2

if (CONDITION_ONE) {
 . . .

} else if (CONDITION_TWO) {
 . . .
} else if (CONDITION_THREE) {
 . . .
} else {

 . . .
}

switch (myVariable) {
 case 0:
 . . .
 break;

 case 1:
 . . .
 break;

 default:
 . . .
}

http://developer.electricimp.com/squirrel/squirrelsheet/

